Nvidia Releases Next-Gen AI Processor H200 with 60% to 90% Performance Boost
-
Last night, Nvidia launched the H200, a graphics processing unit (GPU) specifically designed for training and deploying generative AI models.
<p class="article-content__img" style="margin-top: 0px; margin-bottom: 28px; padding: 0px; box-sizing: border-box; outline: 0px; border-width: 0px; border-style: solid; border-color: rgb(229, 231, 235); --tw-shadow: 0 0 #0000; --tw-ring-inset: var(--tw-empty, ); --tw-ring-offset-width: 0px; --tw-ring-offset-color: #fff; --tw-ring-color: rgba(41, 110, 228, 0.5); --tw-ring-offset-shadow: 0 0 #0000; --tw-ring-shadow: 0 0 #0000; line-height: 32px; text-align: center; color: rgb(59, 59, 59); word-break: break-word; font-family: 'PingFang SC', 'Microsoft YaHei', Helvetica, 'Hiragino Sans GB', 'WenQuanYi Micro Hei', sans-serif; letter-spacing: 0.5px; display: flex; -webkit-box-align: center; align-items: center; -webkit-box-pack: center; justify-content: center; flex-direction: column; text-wrap: wrap; background-color: rgb(255, 255, 255);"><img src="https://www.cy211.cn/uploads/allimg/20231114/1-231114091K63X.png" title="WeChat Screenshot_20231114084309.png" alt="WeChat Screenshot_20231114084309.png" style="margin: 0px auto; padding: 0px; box-sizing: border-box; outline: 0px; border: 1px solid rgb(238, 238, 238); --tw-shadow: 0 0 #0000; --tw-ring-inset: var(--tw-empty, ); --tw-ring-offset-width: 0px; --tw-ring-offset-color: #fff; --tw-ring-color: rgba(41, 110, 228, 0.5); --tw-ring-offset-shadow: 0 0 #0000; --tw-ring-shadow: 0 0 #0000; max-width: 700px; background: url('../img/bglogo2.svg') center center no-repeat rgb(247, 248, 249); box-shadow: rgba(27, 95, 160, 0.1) 0px 1px 3px; display: inline-block;"/></p>
Based on the NVIDIA Hopper architecture, it boasts advanced memory and processing capabilities to handle massive data for generative AI and high-performance computing workloads. The H200 is the first GPU equipped with HBM3e memory, offering 141GB of memory and 4.8TB/s memory bandwidth—nearly double the capacity of the NVIDIA H100 Tensor Core GPU and a 1.4x increase in memory bandwidth.
In the field of AI, businesses require large language models to meet various reasoning needs. When processing large language models like Llama2, the H200 demonstrates 2x faster inference speeds compared to H100 GPUs. For high-performance computing applications, memory bandwidth is crucial for improving data transfer speeds and reducing processing bottlenecks. The H200's higher memory bandwidth ensures efficient data access and manipulation, resulting in processing times that are 110x faster compared to CPUs.
<p class="article-content__img" style="margin-top: 0px; margin-bottom: 28px; padding: 0px; box-sizing: border-box; outline: 0px; border-width: 0px; border-style: solid; border-color: rgb(229, 231, 235); --tw-shadow: 0 0 #0000; --tw-ring-inset: var(--tw-empty, ); --tw-ring-offset-width: 0px; --tw-ring-offset-color: #fff; --tw-ring-color: rgba(41, 110, 228, 0.5); --tw-ring-offset-shadow: 0 0 #0000; --tw-ring-shadow: 0 0 #0000; line-height: 32px; text-align: center; color: rgb(59, 59, 59); word-break: break-word; font-family: 'PingFang SC', 'Microsoft YaHei', Helvetica, 'Hiragino Sans GB', 'WenQuanYi Micro Hei', sans-serif; letter-spacing: 0.5px; display: flex; -webkit-box-align: center; align-items: center; -webkit-box-pack: center; justify-content: center; flex-direction: column; text-wrap: wrap; background-color: rgb(255, 255, 255);"><img src="https://www.cy211.cn/uploads/allimg/20231114/1-231114091KN38.png" title="WeChat Screenshot_20231114084755.png" alt="WeChat Screenshot_20231114084755.png" style="margin: 0px auto; padding: 0px; box-sizing: border-box; outline: 0px; border: 1px solid rgb(238, 238, 238); --tw-shadow: 0 0 #0000; --tw-ring-inset: var(--tw-empty, ); --tw-ring-offset-width: 0px; --tw-ring-offset-color: #fff; --tw-ring-color: rgba(41, 110, 228, 0.5); --tw-ring-offset-shadow: 0 0 #0000; --tw-ring-shadow: 0 0 #0000; max-width: 700px; background: url('../img/bglogo2.svg') center center no-repeat rgb(247, 248, 249); box-shadow: rgba(27, 95, 160, 0.1) 0px 1px 3px; display: inline-block;"/></p>
In addition, the H200 has seen improvements in energy efficiency and total cost of ownership. This cutting-edge technology not only provides exceptional performance but also maintains the same power consumption as the H100.
The H200 is expected to begin shipping in the second quarter of 2024.
Nvidia has announced that its upcoming H200 GPU will maintain compatibility with the current H100 model. This means artificial intelligence companies currently using the H100 for training won't need to modify their server systems or software when adopting the new version.